Static and Dynamic Virtual Channel Allocation for High Performance, In-Order Communication in On-Chip Networks
نویسندگان
چکیده
Most routers in on-chip interconnection networks (OCINs) have multiple virtual channels (VCs) to mitigate the effects of head-of-line blocking. Multiple VCs necessitate VC allocation schemes since packets or flows must compete for channels when there are more flows than virtual channels at a link. Conventional dynamic VC allocation, however, raises two critical issues. First, it still suffers from a fair amount of head-of-line blocking since all flows can be assigned to any VC within a link. Moreover, dynamic VC allocation compromises the guarantee of in-order delivery even when used with basic variants of dimensionordered routing, requiring large reorder buffers at the destination core or, alternatively, expensive retransmission logic. In this thesis, we present two virtual channel allocation schemes to address these problems: Static Virtual Channel Allocation and Exclusive Dynamic Virtual Channel Allocation (EDVCA). Static VC allocation assigns channels to flows by precomputation when oblivious routing is used, and ensures deadlock freedom for arbitrary minimal routes when two or more VCs are available. EDVCA, on the other hand, is done at runtime, not requiring knowledge of traffic patterns or routes in advance. We demonstrate that both static VCA and EDVCA guarantee in-order packet delivery under single path routing, and furthermore, that they both outperform dynamic VC allocation (out-of-order) by effectively reducing head-of-line blocking. We also introduce a novel bandwidth-sensitive oblivious routing scheme (BSORM), which is deadlock-free through appropriate static VC allocation. Implementation for these schemes requires only minor, inexpensive changes to traditional oblivious dimension-ordered router architectures, more than offset by the removal of packet reorder buffers and logic. Thesis Supervisor: Srinivas Devadas Title: Associate Department Head, Professor
منابع مشابه
Application Mapping onto Network-on-Chip using Bypass Channel
Increasing the number of cores integrated on a chip and the problems of system on chips caused to emerge networks on chips. NoCs have features such as scalability and high performance. NoCs architecture provides communication infrastructure and in this way, the blocks were produced that their communication with each other made NoC. Due to increasing number of cores, the placement of the cores i...
متن کاملOn Joint Sub-channel Allocation, Duplexing Mode Selection, and Power Control in Full-Duplex Co-Channel Femtocell Networks
As one of the promising approaches to increase the network capacity, Full-duplex (FD) communications have recently gained a remarkable attention. FD communication enables wireless nodes to simultaneously send and receive data through the same frequency band. Thanks to the recent achievements in the self-interference (SI) cancellation, this type of communication is expected to be potentially uti...
متن کاملGuaranteed in-order packet delivery using Exclusive Dynamic Virtual Channel Allocation
In-order packet delivery, a critical abstraction for many higher-level protocols, can severely limit the performance potential in low-latency networks (common, for example, in network-on-chip designs with many cores). While basic variants of dimension-order routing guarantee in-order delivery, improving performance by adding multiple dynamically allocated virtual channels or using other routing...
متن کاملCost-aware Topology Customization of Mesh-based Networks-on-Chip
Nowadays, the growing demand for supporting multiple applications causes to use multiple IPs onto the chip. In fact, finding truly scalable communication architecture will be a critical concern. To this end, the Networks-on-Chip (NoC) paradigm has emerged as a promising solution to on-chip communication challenges within the silicon-based electronics. Many of today’s NoC architectures are based...
متن کاملCongestion estimation of router input ports in Network-on-Chip for efficient virtual allocation
Effective and congestion-aware routing is vital to the performance of network-on-chip. The efficient routing algorithm undoubtedly relies on the considered selection strategy. If the routing function returns a number of more than one permissible output ports, a selection function is exploited to choose the best output port to reduce packets latency. In this paper, we introduce a new selection s...
متن کامل